

01. A(3,5) and B(4,1). Find the locus of point P such that $/(AP)^2 + /(BP)^2 = 60$

SOLUTION :

let P(x,y) be any point on the locus , A(3, 5) ; B(4,1) As per the given condition $/(AP)^2 + /(BP)^2 = 60$ $(x - 3)^2 + (y - 5)^2 + (x - 4)^2 + (y - 1)^2 = 60$ $x^2 - 6x + 9 + y^2 - 10y + 25$ + $\frac{x^2 - 8x + 16 + y^2 - 2y + 1 = 60}{2x^2 - 14x + 25 + 2y^2 - 12y + 26 = 60}$ $2x^2 + 2y^2 - 14x - 12y + 51 - 60 = 0$ $2x^2 + 2y^2 - 14x - 12y - 9 = 0$ Locus of P

02. find equation of the locus of the point P such that join of (-2,3) and (6,-7) subtends right angle at P

SOLUTION :

let P(x,y) be any point on the locus , A(-2,3) ; B(6,-7)
PA² + PB² = AB²

$$((x + 2)^{2}+(y - 3)^{2}) + ((x - 6)^{2}+(y + 7)^{2}) = (-2 - 6)^{2} + (3 + 7)^{2}$$

 $x^{2} + 4x + 4 + y^{2} - 6y + 9 + x^{2} - 12x + 36 + y^{2} + 14y + 49 = 64 + 100$
 $2x^{2} + 2y^{2} - 8x + 8y + 13 + 85 = 164$
 $2x^{2} + 2y^{2} - 8x + 8y + 98 - 164 = 0$
 $2x^{2} + 2y^{2} - 8x + 8y - 66 = 0$
 $x^{2} + y^{2} - 4x + 4y - 33 = 0$ equation of the locus

03. the equation of the locus is $x^2 - 4x - 6y - 20 = 0$. If the origin is shifted to the point (2,-4) , axes remaining parallel , find the new equation of the locus SOLUTION

origin shifted to (h,k) = (2,-4)old coordinates = (x,y), new coordinates = (X,Y) X = x - h; Y = y - k X = x - 2; Y = y + 4 x = X + 2; y = Y - 4OLD equation of the locus : $x^2 - 4x - 6y - 20 = 0$ NEW equation of the locus : $(X + 2)^2 - 4(X + 2) - 6(Y - 4) - 20 = 0$ $x^2 + 4X + 4 - 4X - 8 - 6Y + 24 - 20 = 0$ $x^2 - 6Y = 0$

Q2. Attempt ALL FIVE of the following

01. Find the value of k for which points P(1,-2) , Q(3,1) and R(5,k) are collinear ^mPQ = $\frac{1+2}{3-1} = \frac{3}{2}$ ^mQR = $\frac{k-1}{5-3} = \frac{k-1}{2}$ Since P ,Q ,R are collinear , ^mPQ = ^mQR . $\frac{3}{2} = \frac{k-1}{2}$ 3 = k - 1∴ k = 4

02. find line passing through (2,5) and parallel to 3x - 4y - 7 = 0 3x - 4y - 7 = 0 $m = -\frac{a}{b} = -\frac{3}{-4} = \frac{3}{4}$ <u>Required Line</u> m = 3/4, passing through (2,5) $y - y_1 = m (x - x_1)$ $y - 5 = \frac{3}{4} (x - 2)$ 4y - 20 = 3x - 63x - 4y + 14 = 0

(10)

03.

find line whose x - intercept is 3 and which is perpendicular to line 3x-y+23=03x - y + 23 = 0 $m = -\frac{a}{b} = -\frac{3}{1} = 3$

Required Line

 $m = \frac{-1}{3}, \text{ passing through (3,0)}$ y - y₁ = m (x - x₁) y - 0 = -1/3 (x - 3) 3y = -x + 3 x + 3y - 3 = 0

04.

find the measure of acute angle between the lines 12x - 4y = 5 & 4x + 2y = 7

$$12x - 4y = 5$$

$$m_{1} = -\frac{a}{b} = -\frac{12}{-4} = 3$$

$$4x + 2y = 7$$

$$m_{2} = -\frac{a}{b} = -\frac{4}{2} = -2$$

$$\tan \theta = \left| \frac{m_{1} - m_{2}}{1 + m_{1} \cdot m_{2}} \right|$$

$$= \left| \frac{3 - (-2)}{1 + 3(-2)} \right|$$

$$= \left| \frac{5}{-5} \right|$$

$$= 1$$

$$\theta = 45^{\circ}$$

05. find distance between 6x + 8y + 21 = 0 & 3x + 4y + 7 = 0Line 1 : 6x + 8y + 21 = 0Line 2 : -3x + 4y + 7 = 06x + 8y + 14 = 0

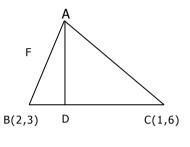
Distance between the two parallel lines :

$$d = \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|$$
$$= \left| \frac{21 - 14}{\sqrt{6^2 + 8^2}} \right|$$
$$= \frac{7}{10}$$

= 0.7 units

01.

```
{\bigtriangleup}ABC . A(1,4) , B(2,3) , C(1,6) % ABC . Find equations of altitudes AD , median BE
```



ALTITUDE AD

$${}^{m}BC = \frac{6-3}{1-2} = -3$$

∴ ${}^{m}AD = \frac{1}{3}$ (AD ⊥ BC)
m = $\frac{1}{3}$, A(1,4)
y - y_1 = m (x - x_1)
y - 4 = $\frac{1}{3}$ (x - 1)
3y - 12 = x - 1
x - 3y + 11 = 0

MEDIAN BE

$$E = \left(\frac{1+1}{2}, \frac{4+6}{2}\right) = (1,5)$$

$$B(2,3), E(1,5)$$

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$y - 3 = \frac{5-3}{1-2} (x - 2)$$

$$y - 3 = -2(x - 2)$$

$$2x + y - 7 = 0$$

02. Find equation of line which passes thro' point of intersection of lines x+2y - 3 = 0and 3x + 4y - 5 = 0 and which is perpendicular to the line x - 3y + 5 = 0

Point of Intersection

x + 2y = 3 x 2	
3x + 4y = 5	
3x + 4y = 5	
2x + 4y = 6	
x = -1	

subs in (1) y = 2 \therefore (-1,2)

x - 3y + 5 = 0 $m = -\frac{a}{b} = \frac{-1}{-3} = \frac{1}{3}$

Equation of required line m = -3, passing through (-1,2) $y - y_1 = m (x - x_1)$ y - 2 = -3(x + 1)3x + y + 1 = 0

Find equations of the lines passing through the point (4,5) and making an angle of 45°

C

with the line $2x - y + 7 = 0$ A(4,5)			
STEP 1 :	m		
$2x - y + 7 = 0$ $45^{\circ} m = 2$ $B 2x - y + 7 = 0$			
$m = \frac{-a}{b} = \frac{-2}{(-1)} = 2$			
b (-1) STEP 2 :			
$\tan \theta = \frac{m_1 - m_2}{1 + m_1.m}$	2		
$\tan 45 = \left \frac{m-2}{1 + m(2)} \right $			
$1 \qquad = \left \frac{m-2}{1+2m} \right $			
$\frac{m-2}{1+2m} = 1$	$\frac{m-2}{1+2m} = -1$		
m - 2 = 1 + 2m	m - 2 = -1 - 2m		
m - 2m = 1 + 2	m + 2m = -1 + 2		
-m = 3	3m = 2		
m = -3	m = <u>1</u> 3		
STEP 3			
Equation of AB: $m = -3$, A(4, 5) $y - y_1 = m(x - x_1)$			
y - 5 = -3(x - 4)			
y - 5 = -3x + 12			
3x + y - 17 = 0			
<u>Equation of AC</u> : $m = \frac{1}{3}$, A(4, 5)			
$y - y_1 = m (x - x_1)$			
$y - 5 = \frac{1}{3}(x - 4)$			
3y - 15 = x - 4			
x - 3y + 15 - 4 = 0			

x - 3y + 11 = 0

04. Find the equation of line which passes through (1,2) and the midpoint of the portion of the line 3x - 4y + 24 = 0intercepted between the coordinate axes

